Acta Cryst. (1974). B30, 610

Structure Cristalline et Stéréochimie de l'Ervatamine

PAR CLAUDE RICHE

Laboratoire de Cristallochimie, Institut de Chimie des Substances Naturelles du CNRS, 91190-Gif sur Yvette, France

(Reçu le 5 octobre 1973, accepté le 24 octobre 1973)

Ervatamine, an indole alkaloid of a novel type, crystallizes with methanol ($C_{21}H_{26}N_2O_3$. CH₄O) in space group $P_{2_12_12_1}$: a=9.63, b=10.57, c=20.25 Å, Z=4. The structure was solved by direct methods and refined to a final R value of 5% from 1988 photographic data. The configuration (not absolute) of the molecule is established. Hydrogen bonds involving methanol connect two molecules of ervatamine.

Introduction

La 19-20 déhydroervatamine (I), l'ervatamine (II) et la 20 épiervatamine (III) sont des alcaloïdes indoliques d'un type nouveau, extraits de *l'ervatamia orientalis* (apocynacées) pour lesquels les formules planes suivantes ont été établies par Knox & Slobbe (1971).

En relation avec les recherches, poursuivies à l'Institut de Chimie des Substances Naturelles du CNRS, sur une modification de la réaction de Polonovski (Husson, Chevolot, Langlois, Thal & Potier, 1972), un mécanisme a été proposé qui permet d'expliquer la biosynthèse de certains alcaloïdes indoliques ne possédant pas la chaîne éthanamine de la tryptamine (Ahond, Cavé, Kan-Fan, Langlois & Potier, 1970).

Appliquée aux alcaloïdes du groupe vobasine (vobasine, tabernaemontamine et drégamine: Renner, Prins, Burlingame & Biemann, 1963), cette réaction permet d'expliquer la biosynthèse des alcaloïdes du groupe déhydroervatamine. Ainsi, la tabernaemontamine conduit à la 20 épiervatamine et la drégamine à l'ervatamine (Husson, Langlois, Riche, Husson & Potier, 1973). Lors de cette étude, la connaissance de la stéréochimie des alcaloïdes du type déhydroervatamine était nécessaire pour les relier avec certitude au groupe des alcaloïdes de la vobasine.

Ceci a été obtenu en déterminant la structure cristalline de l'ervatamine.

Un autre résultat intéressant a été acquis au cours de ce travail: les configurations en C(20) précédemment attribuées (Renner *et al.*, 1963) à la chaîne éthylde la drégamine et de la tabernaemontamine doivenêtre inversées (Husson *et al.*, 1973).

C'est l'analyse détaillée de la structure cristalline de l'ervatamine qui sera exposée dans le présent mémoire.

Partie expérimentale

Les cristaux se présentent sous la forme de plaquettes incolores, allongées suivant l'axe *a*. Les paramètres de la maille ont été déterminés à l'aide de clichés de cristal tournant et de Weissenberg avec étalonnage par fil d'aluminum. Les données cristallographiques sont rassemblées dans le Tableau 1.

Tableau 1. Données cristallographiques

Formule brute	$C_{21}H_{26}N_2O_3 \cdot CH_4O$
Masse moléculaire	344 + 32 = 376
Système cristallin	Orthorhombique
Groupe spatial	$P2_12_12_1$
a	9,63 Å
b	10,57
c	20,25
V	2061 Å ³
Z	4
Densité calculée	1,24 g cm ⁻³
F(000)	832
Nombre de réflexions indépendantes	2263
Nombre de réflexions observées	1988
Radiation utilisée	Cu <i>K</i> α, λ = 1,5418 Å

Les réflexions intégrées des strates 0kl à 8kl ont été enregistrées par la technique des films superposés, sur un goniomètre de Weissenberg utilisé sous l'angle d'équi-inclinaison. Les intensités ont été mesurées avec un micro-densitomètre manuel et corrigées des facteurs de Lorentz-polarisation, de la déformation des taches (Phillips, 1954) et du dédoublement causé par la structure fine $K\alpha_1-K\alpha_2$ de la radiation utilisée. Une erreur quadratique moyenne: σ_H , basée sur l'erreur de mesure et sur les rapports entre films superposés a été attribuée à chacune des réflexions (Riche, 1969). Les facteurs de structure normalisés ont été calculés par la méthode de Wilson.

Résolution et affinement de la structure

La structure a été résolue en appliquant la méthode d'addition symbolique (Karle & Karle, 1966). Les valeurs numériques les plus probables des symboles ont été déterminées par la fonction des phases (Riche, 1970, 1973).

Un premier ensemble de départ a été choisi (Tableau 2) et la fonction des phases calculée après un et deux cycles d'addition symbolique. Ces opérations ont été effectuées par le programme *DEVIN* (Riche, 1973). On pouvait dénombrer 12 maximums (l'un d'entre eux aurait conduit à la solution de la structure). Une chute notable de la valeur de la fonction au *maximum maximorum* ($\mathcal{F} = 0,78$ après un cycle et $\mathcal{F} = 0,38$ après deux cycles d'addition symbolique) nous a conduit à écarter cette première base de départ. Un tel fait, en effet (Riche, 1971) peut être associé à l'introduction dans le premier cycle d'addition symbolique de phases φ^1 dont les valeurs réelles s'éloignent fortement de celles calculées par la formule (Cochran, 1955):

$$\varphi_H^1 = \varphi_K^0 + \varphi_{H-K}^0$$

Un deuxième ensemble de départ a alors été constitué en éliminant certaines réflexions équatoriales (Tableau 3). La fonction des phases correspondante indiquait 4 solutions (Tableau 4) qui ont été utilisées comme point de départ d'un affinement par la formule

		Т	ableau 2. En	semble de	départ 1
h	k	l	Ε	φ	
0	3	2	3,50	$\pi/2$	
0	9	15	3,32	$\pi/2$	origine
5	0	14	3,17	0]	
5	0	15	3,20	$\pi/2$	énantiomorphe
0	0	10	2,85	а	0 ou π
4	7	0	2,63	Ь	0 ou π
1	6	16	3,49	с	$0 a 2\pi$
8	1	1	2,21	d	$0 a 2\pi$
3	1	15	2,21	е	$0 a 2\pi$
			,		

Tableau 3. Ensemble de départ 2

h	k l	Ε	φ	
0	3 2	3,50	$\pi/2$	
0	9 15	3,32	$\pi/2$	
5	0 14	3,17	0	
1	6 16	3,49	а	$0 a \pi^*$
1	4 14	2,96	Ь	$0 a 2\pi$
8	1 1	2,21	с	0 à 2π
5	2 14	2,43	d	$0 a 2\pi$

* Enantiomorphe.

Tableau 4. Combinaison de phases les plus probables correspondant à l'ensemble de phases symboliques n° 2

 F_1 et F_2 : valeurs de la fonction des phases $\mathcal{F}(a,b,c,d)$ après 1 et 2 cycles d'addition symbolique.

I et 2 eyeles a addition symbolique.						
Solutions	а	Ь	с	d	F_1	F_2
A	π/2*	$7\pi/4$	$\pi/2$	π	72	58
В	$\pi/2$	$7\pi/4$	$3\pi/2$	π	72	58
С	$\pi/2$	π	0	0	66	47
D	$\pi/2$	π	π	0	66	48

* Fixe l'énantiomorphe.

Tableau 5. Coordonnées et facteurs d'agitation thermique des atomes de carbone, azote et oxygène ($\times 10^5$)

$T = \exp\left(-\sum_{i} \beta_{ij} h_i h_j\right)$

							-		•
	x	у	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
N(1)	-32833 (25)	48064 (24)	38298 (12)	868 (30)	1037 (22)	271 (6)	-7 (20)	- 46 (10)	- 37 (10)
$\hat{\mathbf{C}}(\hat{2})$	-21123(28)	43529 (23)	35157 (13)	807 (34)	815 (20)	244 (6)	2 (21)	0 (11)	-15 (10)
$\tilde{C}(3)$	-22100(32)	38391 (24)	28444 (14)	1102 (22)	851 (22)	248 (6)	-3 (23)	-94 (12)	8 (10)
N(4)	30209 (25)	25384 (22)	33273 (12)	939 (29)	847 (19)	282 (6)	175 (21)	5 (10)	24 (9)
CG	17915 (30)	19820 (25)	36267 (13)	1060 (37)	800 (20)	233 (6)	75 (22)	5 (11)	20 (10)
Č(6)	4718 (29)	40212 (22)	37846 (12)	924 (35)	765 (20)	230 (6)	-13 (20)	- 40 (11)	- 52 (10)
$\tilde{C}(7)$	-9604(29)	45170 (22)	39104 (12)	985 (37)	727 (19)	221 (6)	-4 (19)	-23 (11)	- 30 (9)
$\tilde{C}(8)$	- 14405 (31)	51216 (24)	44935 (13)	1037 (40)	785 (21)	218 (6)	39 (21)	-26 (11)	9 (10)
Č(9)	-7704 (36)	55649 (30)	50704 (14)	1418 (49)	1100 (28)	235 (7)	36 (28)	- 82 (14)	-103(12)
C(10)	- 15504 (42)	61580 (39)	55404 (16)	1542 (55)	1547 (43)	257 (8)	22 (38)	- 38 (15)	-131(16)
$\hat{\mathbf{C}}(11)$	- 29838 (44)	63336 (36)	54532 (16)	1800 (61)	1296 (35)	275 (8)	79 (40)	184 (18)	-80(15)
C(12)	- 36642 (38)	59144 (32)	49067 (16)	1268 (45)	1193 (31)	290 (8)	110 (31)	108 (15)	9 (13)
C(13)	-28767(32)	52938 (25)	44288 (14)	1131 (46)	860 (23)	253 (7)	-2 (25)	20 (13)	4 (10)
C(14)	-8771(31)	36838 (28)	24626 (13)	1161 (39)	1009 (25)	211 (6)	0 (25)	-26(12)	13 (10)
C(15)	2921 (27)	27859 (22)	26898 (12)	1055 (36)	681 (18)	203 (6)	- 66 (19)	8 (11)	-13(8)
C(16)	4705 (29)	27042 (22)	34565 (12)	1001 (34)	742 (18)	200 (5)	-23(20)	-15(10)	15 (9)
C(17)	- 7093 (31)	19297 (24)	37430 (13)	1100 (36)	744 (19)	229 (6)	-38 (21)	29 (12)	22 (9)
C(18)	28538 (44)	33700 (33)	12225 (16)	1977 (58)	1191 (33)	277 (8)	182 (35)	298 (19)	72 (13)
C(19)	15604 (36)	30364 (30)	15927 (14)	1640 (49)	1023 (27)	226 (7)	-33 (30)	86 (15)	-11(12)
C(20)	16498 (30)	31640 (25)	23438 (13)	1159 (38)	804 (21)	211 (6)	-12 (22)	46 (11)	-0(9)
C(21)	29029 (25)	24491 (26)	26076 (14)	1274 (40)	875 (23)	264 (7)	106 (26)	105 (13)	12 (11)
C(22)	42828 (39)	18793 (34)	35517 (19)	1229 (46)	1202 (33)	401 (11)	346 (33)	3 (18)	72 (16)
O(23)	- 33409 (23)	36763 (25)	25833 (11)	1239 (31)	1403 (24)	302 (6)	-80(23)	- 163 (10)	-121(11)
O(24)	-6619(25)	19310 (19)	44080 (9)	1427 (29)	1058 (19)	210 (4)	- 183 (22)	32 (9)	51 (8)
O(25)	-15432 (25)	13383 (22)	34334 (11)	1615 (35)	1139 (20)	273 (6)	- 542 (22)	-15(11)	38 (9)
C(26)	- 17648 (45)	12763 (42)	47395 (17)	1750 (60)	1616 (43)	277 (8)	-431 (41)	152 (17)	111 (16)
O(27)	38660 (22)	49993 (20)	36050 (12)	1158 (29)	1001 (20)	353 (6)	- 69 (20)	-82(10)	5 (10)
C(28)	35429 (51)	59266 (37)	31361 (25)	2138 (70)	1100 (33)	540 (15)	- 385 (41)	- 242 (25)	203 (18)

des tangentes (Karle & Hauptman, 1956). La première synthèse de Fourier, calculée avec les E, a révélé les 26 atomes de la molécule d'ervatamine (solution A: Tableau 4). La molécule de méthanol a été localisée sur une série différence.

Les coordonnées atomiques, les facteurs de température isotrope puis anisotrope des 28 atomes et les 9 facteurs d'échelle ont été affinés par la méthode des moindres carrés (matrice complète) en minimisant l'expression $S = w(|F_o| - |F_c|)^2$. Deux séries différence successives ont été nécessaires pour localiser les 30 atomes d'hydrogène. Ceux-ci ont été introduits dans l'affinement, avec un facteur de température bloqué, égal à celui de l'atome porteur.

Nous avons utilisé une pondération $w_H = 1/\sigma_H^2$ où σ_{H} représente l'erreur quadratique moyenne définie plus haut. Ce schéma de pondération a été vérifié et en fin d'affinement les valeurs moyennes de $w(|F_a| -$

			u nyurogeni	
	x	у	Z	В
H(1)	-420(5)	478 (4)	367 (2)	4.31
H(5a)	191 (5)	196 (4)	410 (2)	4.09
H(5b)	165 (5)	110 (4)	347 (2)	4.09
H(6a)	97 (4)	461 (4)	350 (2)	3.48
H(6b)	98 (4)	402 (4)	421 (2)	3.48
H(9)	34 (5)	543 (4)	513 (2)	4.52
H(10)	-111(5)	646 (5)	594 (3)	5.76
H(11)	-356(5)	685 (5)	579 (3)	5.28
H(12)	-462(6)	606 (5)	486 (2)	5.20
H(14a)	- 43 (4)	455 (4)	244 (2)	4.15
H(14b)	-115(4)	347 (4)	200 (2)	4.15
H(15)	3 (5)	183 (4)	253 (2)	3.61
H(18a)	263 (5)	341 (5)	71 (2)	4,97
H(18b)	366 (5)	277 (5)	130 (2)	4,97
H(18c)	315 (5)	427 (5)	133 (2)	4.97
H(19a)	80 (5)	356 (5)	141 (2)	4.87
H(19b)	126 (5)	216 (5)	149 (2)	4,87
H(20)	175 (4)	405 (4)	244 (2)	3,84
H(21a)	288 (5)	155 (4)	246 (2)	4,36
H(21 <i>b</i>)	381 (5)	276 (4)	238 (2)	4,36
H(22a)	441 (5)	204 (5)	408 (2)	5.31
H(22b)	520 (5)	223 (5)	336 (3)	5.31
H(22c)	415 (5)	96 (5)	349 (3)	5.31
H(26a)	-172 (6)	27 (5)	471 (3)	6,09
H(26b)	-268 (6)	173 (5)	465 (3)	6,09
H(26c)	-166(6)	133 (5)	518 (3)	6 09

Tableau 6 Paramètres des atomes d'hudrogène (x 103)

 $|F_c|)^2$ pouvaient être considérées comme constantes en fonction de F_o et de $\lambda^{-1} \sin \theta$.* L'indice R, pour les

133 (5)

427 (5)

564 (5)

623 (5)

676 (5)

518 (3)

351 (2)

265 (3)

316 (2)

323 (3)

6,09

4,72

6,41

6,41

6.41

-166 (6)

337 (5)

385 (6)

240 (6)

402 (6)

H(27)

H(28a)

H(28b)

H(28c)

* La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 30263, 15 pp., 1 microfiche). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre.

Fig. 2. Distances interatomiques (en Å). Ecart-type moyen: 0,004 Å. Dans la molécule de méthanol C(28)-O(27)=1,404 Å.

$$R = \frac{\sum ||F_o| - |F_c||}{\sum F_o} = 0,050 \; .$$

Les facteurs de structure atomiques pour le carbone, l'azote et l'oxygène proviennent des *International Tables for X-ray Crystallography* (1962). Les valeurs pour l'hydrogène sont prises dans les tableaux publiés par Stewart, Davidson & Simpson (1965). Les coordonnées atomiques et les paramètres thermiques sont rassemblés dans les Tableaux 5 et 6.

Description de la molécule

La structure moléculaire de l'ervatamine est représentée sur la Fig. 1. La chaîne éthyle en C(20) est β . L'hydrogène en C(15) et le carbométhoxy en C(16) sont tous deux en position *cis* par rapport à cette

Fig. 3. Angles de valence (en °). Ecart-type moyen: 0,25°. C(5)-C(16)-C(6) 110,9°; C(15)-C(16)-C(17) 109,1°.

Fig. 4. Principaux angles de torsion (en °), en utilisant la convention de Klyne & Prelog (1960).

chaîne. Le méthyle C(22) est en position β . La configuration absolue est déduite de celle des alcaloïdes du type vobasine par filiation biogénétique (Renner *et al.*, 1963; Husson *et al.*, 1973). La numérotation utilisée (Fig. 2) est celle généralement adoptée pour les alcaloïdes indoliques (Le Men & Taylor, 1965).

Les distances, les angles de valence et les principaux angles de torsion sont donnés dans les Figs. 2, 3, 4 et 5. Les équations des plans moyens et les distances à ces plans sont rassemblées dans le Tableau 7.

La conjugaison de la cétone C(3)-O(23) avec le noyau indolique, en particulier par l'intermédiaire de la forme hybride suivante:

se traduit par un net raccourcissement de la liaison C(2)-C(3): 1,468 Å et un allongement de la liaison C(2)-C(7): 1,378 Å. Cette dernière liaison, dans les noyaux indoliques, accuse en général un plus fort caractère de liaison double:

- 1,355 et 1,351 Å dans la N,N-diméthyltryptamine (Falkenberg, 1972);

- 1,37 Å dans la 5-méthoxy-N,N-diméthyltryptamine (Falkenberg & Carlström, 1971); – 1,346 et 1,347 Å dans les déséthyl éburnamonines (Césario & Pascard-Billy, 1973);

- 1,34 et 1,35 Å dans l'isocinchophyllamine (Guilhem, 1974).

L'atome O(23) est dans le plan du noyau indolique; les deux atomes de carbone C(3) et C(6) sont eux en dehors de ce plan: +0,12 et -0,12 Å. Ainsi, par suite des contraintes stériques imposées par le cycle à sept chaînons, la planéité de l'ensemble conjugué n'est qu'approchée. Le groupement cétone, constitué par les atomes C(2), C(3), C(14) et O(23), fait un angle de 12.7° avec le plan de l'indole.

Le noyau indolique est légèrement plié le long de la liaison C(8)-C(13). Les cycles benzénique et pyrrolique sont plans (Tableau 7) et ils font entre eux un angle dièdre de 2,25°. Cette légère pliure du noyau

Fig. 5. Projections de Newman le long des liaisons C(16)-C(17)et C(15)-C(16).

Tableau 7. Principaux plans moyens

Les équations sont en Å dans un système orthonormé. Distances au plan en Å.

Equations at						
	A	0,1623x	+0,8840y-0	,4385 <i>z</i> – 0,61	49 = 0	
	В	0, 1685 <i>x</i>	+0,8757y-0	,4524z - 0,41	14 = 0	
	С	0,1546 <i>x</i>	+0,8931y-0	,4224 <i>z</i> −0,80	44 = 0	
	D	0,2245 <i>x</i>	+0,8829y-0	,4123 <i>z</i> – 0,73	09 = 0	
	E	-0,0370x	+0,9413y-0	,3356 <i>z</i> – 2,03	00 = 0	
	F	0,5991 <i>x</i>	-0,8007y-0	0,0030z + 2,05	58 = 0	
Distances au	x plans.					
	A	В	С	D	E	F
C(8)	0,018*	-0,006*	0,000*			
C(9)	0,009*	0,001*	-0,027			
C(10)	-0,009*	0,006*	-0,072			
C(11)	-0,028*	-0,004*	-0,100			
C(12)	-0,013*	-0,004*	-0,068			
C(13)	0,023*	0,008*	-0,005*			
N(1)	0,012*	-0,021	0,006*			
C(7)	-0,007*	-0,055	0,004*	-0,036*		
C(2)	-0,023*	-0,077	-0,006*	0,038*	-0,011*	
C(3)	-0,121		-0,078	-0,019*	0,043*	
C(14)	-0,523			-0,481	-0,013*	
O(23)	-0,023		0,021		-0,012*	
C(15)				0,299		
C(16)				0,977		0,005*
C(6)	0,123		0,154	0,015*		0.010*
C(17)						-0,019*
O(24)						0,004*
O(25)						0,005*
O(26)						-0,077

Angles entre les normales aux plans: B/C: 2,25°; E/A: 12,7°; E/C: 12,4°; F/A: 52,5°.

indolique, remarquée par Falkenberg & Carlström (1971) et par Bergman, Abrahamsson & Dahlén (1971) n'est pas une caractéristique de ce noyau $(0,17^\circ$: Falkenberg, 1972; 1 et $3,5^\circ$: Guilhem, 1974).

Le cycle pipéridinique adopte la conformation chaise. Le méthyle C(22) lié à l'atome d'azote N(4), la chaîne éthyle en C(20) et le carbométhoxy en C(16) sont en position équatoriale.

Le cycle à sept chaînons est très déformé comme l'indiquent les angles de torsion (Fig. 4). Il est dans une conformation demi-chaise, les quatre atomes C(2), C(3), C(7) et C(6) sont approximativement dans un même plan (plan D, Tableau 7). La jonction entre ce dernier cycle et le cycle pipéridinique est *cis*.

Le groupement carbométhoxy est plan (plan F, Tableau 7) et fait un angle de 52,5° avec le plan moyen du noyau indolique.

Edifice cristallin

Les Figs. 6 et 7 représentent les projections x0z et xy0 de la maille cristalline. La molécule de méthanol constitue un pont par deux liaisons hydrogène entre deux molécules d'ervatamine voisines suivant le schéma:

$$N(1)-H\cdots O(27)-H\cdots N(4)$$

2,790 Å 2,797 Å

Toutes les autres distances sont supérieures à la somme des rayons de van der Waals.

Les calculs ont été effectués au Centre de calculs du Centre National de la Recherche Scientifique à Orsay (CIRCE) sur l'ordinateur IBM 370/165 en utilisant les principaux programmes suivants:

- Addition symbolique pondérée et calcul de la fonction des phases: *DEVIN* (Riche, 1973).

- Affinement: une modification de ORFLS de Busing, Martin & Levy (1962).

- Distances, angles et plans moyens: programmes de la série N.R.C. de Ahmed, Hall, Pippy & Huber (1966).

L'auteur remercie vivement MM P. Potier et H.-P. Husson pour leur intérêt constant au cours de ce travail.

Références

- AHMED, F. R., HALL, S. R., PIPPY, M. E. & HUBER, C. P. (1966). World List of Crystallographic Computer Programs. 2nd ed. Appendix, p. 52. Utrecht: Oosthoek.
- AHOND, A., CAVÉ, A., KAN-FAN, C., LANGLOIS, Y. & PO-TIER, P. (1970). Chem. Commun. p. 517.
- BERGMAN, J., ABRAHAMSSON, S. & DAHLÉN, B. (1971). Tetrahedron, 27, 6143–6149.

Fig. 6. Projection x0z. Les atomes d'azote sont représentés par des cercles hachurés, l'atome d'oxygène des molécules de méthanol par des cercles pointillés.

Fig. 7. Projection xy0.

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Césario, M. & Pascard-Billy, C. (1973). Acta Cryst. B29, 529–537.
- COCHRAN, W. (1955). Acta Cryst. 8, 473-478.
- FALKENBERG, G. (1972). Acta Cryst. B28, 3075-3083.
- FALKENBERG, G. & CARLSTRÖM, D. (1971). Acta Cryst. B27, 411-418.
- GUILHEM, J. (1974). Acta Cryst. Sous presse.
- HUSSON, A., LANGLOIS, Y., RICHE, C., HUSSON, H.-P. & POTIER, P. (1973). *Tetrahedron*. 29, 3095-3098.
- HUSSON, H.-P., CHEVOLOT, L., LANGLOIS, Y., THAL, C. & POTIER, P. (1972). Chem. Commun. pp. 930-931.
- International Tables for X-ray Crystallography. (1962). Vol. III. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

- KARLE, I. L. & KARLE, J. (1966). Acta Cryst. 20, 555–559.KARLE, J. & HAUPTMAN, H. (1956). Acta Cryst. 9, 635–651.
- KLYNE, W. & PRELOG, V. (1960). Experientia, 16, 521–568.KNOX, J. R. & SLOBBE, J. (1971). Tetrahedron Lett. 24, 2149–2151.
- LE MEN, J. & TAYLOR, W. I. (1965). Experientia, 21, 508-510.
- PHILLIPS, D. C. (1954). Acta Cryst. 7, 746-751.
- RENNER, U., PRINS, D. A., BURLINGAME, A. L. & BIEMANN, K. (1963). *Helv. Chim. Acta*, **46**, 2186.
- RICHE, C. (1969). Diplôme d'Etudes Supérieures. Univ. de Paris.
- RICHE, C. (1970). C. R. Acad. Sci. Paris, 271, 396-398.
- RICHE, C. (1971). C. R. Acad. Sci. Paris, 272, 1422-1424.
- RICHE, C. (1973). Acta Cryst. A 29, 133-137.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175-3187.